A peptide-modified chitosan-collagen hydrogel for cardiac cell culture and delivery.
نویسندگان
چکیده
Myocardial infarction (MI) results in the death of cardiomyocytes (CM) followed by scar formation and pathological remodeling of the heart. We propose that chitosan conjugated with the angiopoietin-1 derived peptide, QHREDGS, and mixed with collagen I forms a thermoresponsive hydrogel better suited for the survival and maturation of transplanted cardiomyocytes in vitro compared to collagen and chitosan-collagen hydrogels alone. Conjugation of QHREDGS peptide to chitosan does not interfere with the gelation, structure or mechanical properties of the hydrogel blends. The storage modulus of 2.5 mg ml(-1) 1:1 mass:mass (m:m) chitosan-collagen was measured to be 54.9 ± 9.1 Pa, and the loss modulus 6.1±0.9 Pa. The dose-response of the QHREDGS peptide was assessed and it was found that CMs encapsulated in High-peptide gel (651 ± 8 nmol peptide ml-gel(-1)) showed improved morphology, viability and metabolic activity in comparison to the Low-peptide (100 ± 30 nmol peptide ml-gel(-1)) and Control (No Peptide) groups. Construct (CMs in hydrogel) functional properties were not significantly different between the groups; however, the success rate of obtaining a beating construct was improved in the hydrogel with the High amount of QHREDGS peptide immobilized compared to the Low and Control groups. Subcutaneous injection of hydrogel (Control, Low and High) with CMs in the back of Lewis rats illustrated its ability to localize at the site of injection and retain cells, with CM contractile apparati identified after seven days. The hydrogel was also able to successfully localize at the site of injection in a mouse MI model.
منابع مشابه
Hydrogels With Integrin-Binding Angiopoietin-1-Derived Peptide, QHREDGS, for Treatment of Acute Myocardial Infarction Reis et al: Peptide Modified Hydrogel for Treatment of MI
Background—Hydrogels are being actively investigated for direct delivery of cells or bioactive molecules to the heart post-myocardial infarction (MI) to prevent cardiac functional loss. We postulate that immobilization of the pro-survival angiopoietin-1-derived peptide, QHREDGS, to a chitosan-collagen hydrogel could produce a clinically translatable thermo-responsive hydrogel to attenuate post-...
متن کاملHydrogels with integrin-binding angiopoietin-1-derived peptide, QHREDGS, for treatment of acute myocardial infarction.
BACKGROUND Hydrogels are being actively investigated for direct delivery of cells or bioactive molecules to the heart after myocardial infarction (MI) to prevent cardiac functional loss. We postulate that immobilization of the prosurvival angiopoietin-1-derived peptide, QHREDGS, to a chitosan-collagen hydrogel could produce a clinically translatable thermoresponsive hydrogel to attenuate post-M...
متن کاملQHREDGS Enhances Tube Formation, Metabolism and Survival of Endothelial Cells in Collagen-Chitosan Hydrogels
Cell survival in complex, vascularized tissues, has been implicated as a major bottleneck in advancement of therapies based on cardiac tissue engineering. This limitation motivates the search for small, inexpensive molecules that would simultaneously be cardio-protective and vasculogenic. Here, we present peptide sequence QHREDGS, based upon the fibrinogen-like domain of angiopoietin-1, as a pr...
متن کاملSelf-Assembled Hydrogel Fiber Bundles from Oppositely Charged Polyelectrolytes Mimic Micro-/Nanoscale Hierarchy of Collagen
Fiber bundles are present in many tissues throughout the body. In most cases, collagen subunits spontaneously self-assemble into a fibrilar structure that provides ductility to bone and constitutes the basis of muscle contraction. Translating these natural architectural features into a biomimetic scaffold still remains a great challenge. Here, a simple strategy is proposed to engineer biomimeti...
متن کاملCo-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice
Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biomaterialia
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2012